
Load testing
fundamentals
Colin LEVERGER, E.N.S.S.A.T. LANNION
colinleverger@gmail.com

T
his paper will provide an overview of
one of the main test specialties, known
as the load testing. It will give a pre-

view of the methodologies and tools used by
professionals of this domain.

1 Introduction

Load testing is becoming a major preoccupation for
big companies, since the huge expansion of the web
and the evolution of uses. Everyone wants to be
connected at any time, to use the internet for various
reasons (buy, sell, communicate. . .). As a company,
it is important to maintain a high quality of service
if you do not want to lose any client. A recent report
says that 40% of shoppers abandon a website that
takes more than 3 seconds to load [Kiss]. Even more
important, a one second page delay in a website
making $100,000 a day could potentially cost $2.5
million in lost sales every year [Kiss].

The load testing field represents all the methods
used to benchmark a website/software. The goal is
to be sure that it will work properly under a high
load (with a lot of people browsing the service at the
same time).

We will discuss here about context, methods and
tools used to do a load test.

2 What is load testing?

When we talk about load testing, we talk about meth-
ods to simulate load on a service/website. Virtual

users can be simulated by computers to browse ser-
vices and to follow classical user paths. The goal is
to observe the behavior of the servers under this ar-
tificial generated load, and to ensure that the service
will not shut down under any circumstances.

There are several ways to test a system. Seven of
the mains will be listed below [Smar].

1. Unitary Test: validation of all functional aspects
of the website (∼ 5 mins)

2. Component Test: validation of precise con-
text/use cases (∼ 25 mins).

3. Capacity Test: search of the limits of the system,
in terms of the number of simultaneous users,
network use, etc. (few hours).

4. Soak Test: validation of performance during
very long lapse of time (from 4 to +12 hours).

5. Stress regime Test: validation of websites with
several load peaks in a relatively short lapse of
time (few hours).

6. Redundancy Test: validation of load reparti-
tion between several equipment (from 2 to +12
hours).

7. Fail-over Test: validation of service behaviors in
case of crashes (from 2 to +12 hours).

Note that the tests listed above have to be exe-
cuted in theory in this exact order. Indeed, if the
Unitary Tests are not validated, it is not wise to

Page 1 of 4

go ahead—you should probably adapt your product
before continuing.

3 Methodology Followed by Load
Testers

There are quite a few steps before the tests execution
themselves. Most of the time, in big companies, the
need is written in a specification paper, given by
the project’s owners. This one can be very precise,
or not: anyway, it should be before starting the
realization because it will be the guideline during the
entire process. If it is not precise enough, the tester
himself should imagine practical solutions to test the
considered system, by developing the given drafts.

When the specifications are clarified, it is time to
think about the test platform. As a matter of fact,
it is forbidden to execute tests on the production
platform, because there are big chances to break
the service (and to lose clients!). The test platform
will be an exact replica of the production platform
(machines, infrastructure, filer. . .).

Then, it is important to choose and install the
right adapted tools. To learn more about tools, see
section 4.

After all these previous preparation steps, the tests
should now begin. In this part, it is important to
follow the guidelines defined in the first step. These
guidelines could contain:

• Use cases,

• User paths to follow,

• Credentials,

• Details about sensible application parts.

The tester should be aware of all these details,
execute the tests and store results to analyze them
carefully. Of course, the final step of the test cam-
paign consists in writing a report, which will explain
the problem(s) found on the application, the proce-
dure followed during tests to the client and the rec-
ommendations to improve the production platform
performances according to the clients’ use. This doc-
ument is critical, because it will be the entry point
to improve the application.

Note that the entire process described above is
iterative, and could be executed more than once for
a more complex campaign. It is still a good habit to
improve the quality of the tests iteratively.

4 Tools

There are plenty of tools to execute load tests, and
choosing one could be difficult. There are some points
to considerate before making a choice:

• Budgets given to test team,

• Prices of tools,

• Number of virtual users to simulate,

• Centralized/decentralized architecture,

• Duration of the test campaign,

• Special needs for tests.

4.1 Features of tools

The tools used by load testers are basically simulat-
ing load on servers. It is possible to program tests,
configure details, and to launch the virtual users
browsing with them.

The market of load testing tools is huge, and plenty
of products are available. Most of them offer basic
features, such as the possibility to choose the num-
ber of virtual users to simulate, to give a target of
several different servers, to code different paths for
authorized/unauthorized users, to monitor the test
and create graphs. . . Almost every load testing tool
allows to use injectors; the injectors are separated
machines which are slaves of the main test computer.
They are used to simulate more virtual users. In-
deed, load testing is consuming a lot of memory and
we often need more than 50 machines to simulate
thousands of users1.

In another hand, some products offer exotic fea-
tures. It can be possible to watch answers time for
specific language (Java, PHP, . . .), to chain different
tests together, etc. Theses features are sometime
offered by free and open source projects, but most
of the time, if the need is very specific, it could be
found on expensive solutions.

Some projects are using different tools for the same
tests campaign, but it is definitely better to try to
fit all the needs with only one product.

4.2 Record the test scenarios

Scenarios have to be recorded in order to replay
them with thousands of virtual users. To do so, the

1For example, with a computer with only 8 gigs of memory,
it is barely possible to simulate 100 virtual users before
having a problem on the computer.

Page 2 of 4

tools chosen will in most of the cases be used as a
proxy through which all the requests will pass and
be analyzed.

A typical scenario will be a user path; this user
can do actions such authentification, page browsing,
etc. All the actions done by this particular user will
be recorded, with the exact tempo included.

It is possible to record as many scenarios as there
is user paths. It is then possible to assign a certain
number of users to a specific scenario, with a bunch
of possible customizations.

4.3 Open Source

The main benefit in using an Open Source product is
that it is often totally costless. The high community
around this kind of product is usually reliable, and
it can be a good help if there are problems with the
software.

I will now introduce some of the greatest free and
open source load testing tools.

4.3.1 JMeter

First, one of the worldwide most used tools is JMeter.
This tool is a pure java application designed to load
test functional behavior and measure performance. It
was originally designed for testing Web Applications
but has since expanded to other test functions [Apac].

JMeter is able to test a lot of different
servers/protocol types, is multi-threaded, and has a
java GUI which facilitates the configuration of the
tests and is highly extensible. Indeed, it is possible
to enrich it with modules, developed by you or by the
community. JMeter is distributed, which means that
it can be used with multiple injectors. It can finally
create graphs to observe trends in the response time,
for example.

The first version of JMeter was released on Decem-
ber 15, 1998, which makes it the oldest load testing
tool of its category. It is a mature project which has
released more than 20 versions [Octo].

4.3.2 Gatling

Gatling [Gatl] is a famous growing tool; much more
recent than JMeter (first version released on Decem-
ber 20, 2011), Gatling is also usable with a JVM. It
is coded in Scala, and offers a different experience
because the graphical interface is not used for tests.
In fact, there is a very simple GUI to record the
scenarios but the tests have to be coded in Scala.

The main differences between these two software
are:

• Gatling is not distributed; it is possible to lunch
multiple Gatling on different hosts but it is fully
manual. In other words, no injectors on Gatling!

• Gatling is totally asynchronous when JMeter is
synchronous. For JMeter, the paradigm One
user = one thread is applied, which is not the
case with Gatling.

• Gatling produces a fancy report at the end
of every test, and this dynamic report (full of
HTML/JavaScript) is easy to read. JMeter only
produces graphs (note that it could be possible
to find a module for that but it is not native).

4.3.3 What about cloud solutions?

The two solutions cited above are software that
should be installed on physical machines. We are
living on a Cloud era, and a lot of people have un-
derstood that it is interesting to have access to load
testing functionalities on demand via a web service.

Most of the Cloud solutions are based on JMeter;
they are just simplifying the process of installing
injectors, configuring JMeter by providing beautiful
web interfaces. Most of theses solutions are commer-
cial.

We can mention BlazeMeter or Octoperf which
are ambassadors of this kind of solution.

4.4 Commercial Applications

The use of commercial solutions is sometimes com-
pulsory, because these solutions are often proposing
a lot more parameters than open source solutions.
The drawback of using commercial solutions is the
price of the licenses.

4.4.1 HP LoadRunner

HP LoadRunner [HPLo] is a software testing tool
from Hewlett Packard Enterprise. Its first version
was released in April 2000; since then it is the histor-
ical leader on the market. This tool can only be used
on Windows servers. It is distributed and supports
a lot of applications (including mobile, Ajax, Flex,
HTML 5, . NET, Java, GWT, Silverlight, SOAP,
Citrix, ERP, legacy and more).

The main differences between LoadRunner and
JMeter are that HP have to maintain a very good
quality of service because they are selling this prod-
uct; there are fewer bugs and problems with paid
solutions. Also, LoadRunner offers very useful func-
tionalities to gain time in test adjustment (automatic

Page 3 of 4

script creation in function of the context, for exam-
ple). It is going very deep and is extremely com-
plete—HP is proposing a 5 day training to learn how
to use it and it is clearly the minimum.

The aim of this tool is to have a very complete
graphical interface to build complex tests, to monitor
and to adapt them using different GUI. In metrology
centers, a lot of testers are LoadRunner experts, and
it is easy to capitalize experience with this software.
The deepness of its possibilities involves a very long
learning curve but once the tester knows how the
tool works, it is every time the same process, and
experts are in high demand.

4.4.2 Neoload

Neoload [NeoL] is a French solution, which basically
offers the same type of services than LoadRunner. It
is developed in Marseilles since March 1, 2005, and
because it is a French product, it is much easier to
have support on bugs/questions2 (which is a very
good thing).

A good point to note with Neoload is that it is pos-
sible to install it on Linux machines, which denotes
a will to be more flexible on the development envi-
ronment. A second point is that it costs significantly
less money than LoadRunner.

4.4.3 What about the bill?

The goal of every load running tool is to simulate
load. To do so, impossible to go without simulating
virtual users. For these reasons, software editors have
decided to bill the number of virtual users needed by
the project rather than the product itself. It is also
common to bill in function of the number of machines
when the product will be installed, the number of
injectors that will be used. . .

All these parameters are then mixed together to
create an adapted pricing. Big companies with a lot
of need will usually get good discounts.

5 Conclusion

We have introduced so far a lot of details concerning
load testing, starting from the root of the process to
tools used for tests themselves. This subject is very
vast and you should consider manipulating some of
the products mentioned on this paper to understand
better the common principles. If you want to try
JMeter, I encourage you to read my tutorial [Tuto]
to get started.

2Assuming you are, like me, working in France. . .

As we are clearly moving to a Cloud era, most
of the tools will have a transition to propose their
service online in Software As A Service (SaaS) mode.
It will soon become very common to use online solu-
tions, even in big companies for big projects. There
is still a lot of details to solve, including the manage-
ment of DMZ or secured networks.

References

[Apac] Apache JMeterTM: Apache JMeterTM.
http://jmeter.apache.org/

[Gatl] Gatling: Gatling project, Stress tool. http:
//gatling.io/#/

[HPLo] HP LoadRunner: LoadRunner. http:

//www8.hp.com/us/en/software-solutions/

loadrunner-load-testing/

[Kiss] Kissmetrics: How Loading Time Af-
fects Your Bottom Line. https://blog.

kissmetrics.com/loading-time

[NeoL] Neoload: The fastest, most automated
performance testing tool on the planet. http:

//www.neotys.com/neoload/overview

[Octo] Octoperf: JMeter VS Gatling Tool.
https://octoperf.com/blog/2015/06/08/

jmeter-vs-gatling/

[Smar] Smartbear: 7 Types of Web Performance
Tests. http://goo.gl/XCUKfb

[Tuto] JMeter: An Opensource Load Testing tool.
http://jmeter-tutorial.colinleverger.

fr/#/

Page 4 of 4

 http://jmeter.apache.org/
 http://gatling.io/#/
 http://gatling.io/#/
 http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/
 http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/
 http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/
 https://blog.kissmetrics.com/loading-time
 https://blog.kissmetrics.com/loading-time
 http://www.neotys.com/neoload/overview
 http://www.neotys.com/neoload/overview
 https://octoperf.com/blog/2015/06/08/jmeter-vs-gatling/
 https://octoperf.com/blog/2015/06/08/jmeter-vs-gatling/
 http://goo.gl/XCUKfb
 http://jmeter-tutorial.colinleverger.fr/#/
 http://jmeter-tutorial.colinleverger.fr/#/

	Introduction
	What is load testing?
	Methodology Followed by Load Testers
	Tools
	Features of tools
	Record the test scenarios
	Open Source
	JMeter
	Gatling
	What about cloud solutions?

	Commercial Applications
	HP LoadRunner
	Neoload
	What about the bill?

	Conclusion

